DDoS Attacks: Mitigation and Response Techniques to Minimize Downtime
Presenters

• Eric McIntyre
 • Senior Director, DNS Business
 • CloudFloorDNS

• Vincent Geffray
 • Senior Director Product, IT Alerting
 • Everbridge
What is a DDoS Attack?

+ A DDoS attack is a threat to your digital business

+ DDoS stands for (D)istributed (D)enial (O)f (S)ervice – designed to cripple or take down online services to effectively stop them from serving legitimate customers

+ Can be launched in a variety of ways and multiple attacks of different types at the same time

+ A DDoS Damages ability to serve customers, sell online, provide information to potential customers, effectively doing severe damage to your brand
DDoS Attacks are Growing

+ 64% of companies saw 2+ types of attacks, 32% 1 type of attack
+ Attacks are growing in size, avg size in Q1 2016 was 19.37Gbps
+ 41% of the attacks on companies were over 10Gbps
+ 182% increase in Qtr over Qtr since Q2 2015
Source: Verisign, DDoS attack stats, Q1 2016

+ 125.36% increase in Attacks from Q1 2015 to Q1 2016
+ 137.5% increase in Attacks over 100Gbps
+ 22.47% increase in Attacks from Q4 2015 to Q1 2016
+ 7.96% increase in Duration of Attacks - 16.14 hours
Source: Akamai, State of The Internet, Q1 2016
Why do DDoS Attacks Happen?

+ Targeted – Your Business is a specific target – this can be the result of a disgruntled employee, customer or possible ransom attempt

+ Vertical Market – Certain Vertical Markets are more prone to attacks than others. High concentration of attacks on the following industries: IT/SaaS/Cloud, Financial, Entertainment and Public Sector

+ Bad Luck – Your organization is hosted on a DNS Provider, Web Server or other Cloud Service that happens to share resources with a targeted domain or service

+ Diversion – Attackers Divert attention with DDoS in order to distract Network and Security Personnel while attacking other resources
What happens during an Attack

+ Website, Email, API’s, SaaS services and other online and cloud services can be degraded, offline or slowed to a crawl

+ Online Ordering and other customer facing apps and sites go offline

+ Attacks can last from minutes to many hours, many factors involved

+ You can’t prevent an attack, its simply a matter of when it will happen to you. Preparation is key!
Types of DDoS Attacks

+ Volumetric Attacks – Flooding the pipes or consuming the Bandwidth. UDP and ICMP/PING Floods

+ Application Level Attacks – Targeting specific application
 Tends to be more Expensive, Difficult but targets specific applications

+ Amplification attacks are very common on services such as DNS and NTP, SSDP and other common protocols. Small query’s result in big responses, clogging resources and the pipe

+ State Exhaustion attacks – or Protocol attacks
 Takes advantage of flaws in protocols, such as the Ping of Death which causes a buffer overload
Types of DDoS Attacks (Amplification)

+ Amplification attacks tend to be more common – Attacking DNS one very common type of Amplification Attack.

Using UDP it’s easy to spoof the source of the IP, attackers spoof the IP and send small requests that return a larger reply – hence Amplifying the original request by a certain factor.

The attacker sends a spoofed request to a DNS server that acts as a reflector (40 Bytes in size)

The Authoritative DNS Server then returns back an answer to the spoofed address typically much larger in size than the original request (4K in size for DNSSec)
Amplification attacks are typically launched using a Botnet – a large gathering of compromised systems controlled by hackers and available for “rent”.

The Botnet simply increases the requests and spoofed IP’s and helps clog the pipe with useless data.

The attacker sends a spoofed request to a DNS server that acts as a reflector (40 Bytes in size).

The Authoritative DNS Server then returns back multiple answers to the spoofed addresses typically much larger in size than the original request (4K in size for DNSSec).
Amplification Attacks (DNS Attacks)

A DNS Amplified Reflective attack can be launched in a few different ways, this example reflects responses back to a victim website.

The attacker sends a spoofed request to DNS servers that act as a reflector with the target webserver IP as the source (40 Bytes in size).

The Recursive DNS Server then returns back multiple answers to the spoofed address typically much larger in size than the original request (Amplification varies in size, 2x – 176x).

Target Webserver
Why Protect yourself against DDoS?

+ Service Outages are extremely costly!
+ Loss of Sales can cost you thousands per hour or more!
+ Loss of customers and new customer acquisition, Slow sites can be just as bad as being 100% offline
+ Damage to Brand Name and Brand Reputation
What to do during a DDoS Attack?

+ Have a DR/DP Plan in place BEFORE you get attacked!

+ Identify the Attack - volume and methods of Attack (MTTI)
 - What type of attack, locations, size in Gbps

+ Communication during an attack is critical!
 - Communicate Internally (operations, support, sales, mkt)
 - Communicate Externally to customers & Network Provider (Social & Email)

+ Activate Mitigation plan based on Attack, BGP Routing Adjustments, Scrubbing Traffic, Reroute Pools

+ Confirmation of Mitigation Success internally and externally
Managed DNS can help with DDoS

+ DNS is a core part of your critical infrastructure
+ DNS on a Managed DNS provider with a global Anycast network
+ Use secondary DNS or even a tertiary DNS provider for added resiliency
+ DNS Servers using multiple TLD’s (.com, .biz, .info, co.uk)
+ Use a DNS Service that has DDoS Mitigation (On or On-Demand)
+ Avoid Free DNS Services or Vanilla Website Hosting DNS
How CloudfloorDNS can help

- CloudfloorDNS has a global Anycast network with 13 locations
- Work with hosting locations on a mitigation plan and identify what is “good traffic” and “bad traffic”
- CloudfloorDNS offers DNS Pooling (NS1.P325.CloudfloorDNS.com) for flexibility
- Your Domain is spread across multiple TLD’s (.com, .biz, .info, co.uk) for reliability
- Constant monitoring (Nagios, Alertsite, Thousand Eyes, Netmon) for performance
- Network engineers adjusting announcements and traffic
- If all Network operators implemented BCP38 it would virtually eliminate UDP IP Spoofing
How to minimize the guaranteed downtime due to DDoS attacks

Vincent Geffray, @VGeffray
The facts

• A successful DDoS attack will shut down your operations
• For a few hours or for days
• Collateral damage after a cyberattack continues for much longer (ex. information leaks)
• A Cyberattack is an IT incident of a different nature
• Backup systems, applications and data may be infected and become useless during immediate response and recovery
• Cyberattacks can alter your RTO because production and IT assets are infected
• 32% of org have been affected, and

• 34% think they will during the next two years

• Only 37% of org have a cyber incident response plan

• 61% of CEOs are concerned about cybersecurity, but less than half of board members request information about their organization's state of cyber-readiness

When it happens to others it’s a “Lesson Learned”
When it happens to you it is a “Disaster”!
What are the Root Causes of an unplanned outage?

<table>
<thead>
<tr>
<th>Cause</th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS system failure</td>
<td>25%</td>
<td>24%</td>
<td>29%</td>
</tr>
<tr>
<td>Cyber crime (DDoS)</td>
<td>2%</td>
<td>18%</td>
<td>22%</td>
</tr>
<tr>
<td>Accidental/human error</td>
<td>2%</td>
<td>22%</td>
<td>24%</td>
</tr>
<tr>
<td>Water, heat or CRAC failure</td>
<td>11%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>Weather related</td>
<td>10%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Generator failure</td>
<td>6%</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>IT equipment failure</td>
<td>4%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
</tbody>
</table>

#2
Frustrated Customers

Service Desk

IT Security, IT and Business Continuity

Revenue Loss
Bad publicity, Brand Damage
Customer Retention Risk
Legal Consequences
An unplanned outage is a Business issue
What’s the cost of an unplanned data center outage?

In 2016, an average of $7,900 per minute.
The clock is ticking
#1 Unlike at Sony Pictures, have a plan

- Ensure you’ve defined:
 - a prevention plan,
 - an incident response plan and
 - a communication plan

- Cyberattack response strategy into the BC/DR Plans
- Train your teams on how to respond

Failing to prepare is preparing to fail!
#2 Identify or establish one crisis response team

Crisis Response Team

- Your BCM team, Major IT Incident Response team, IT Security team
- Network engineering, Application support, DB support, Middleware team, Server/infrastructure team, EMR support team
- IT security Manager
- Service Desk manager
- Customer service manager
- Change manager
- IT Service Director
- 3rd Party vendor (technical contact) – DNS provider or Web hosting
- Corporate communications, Legal, Marketing

Assign a Major Incident Manager
#3 Identify Your Contacts and Stakeholders

CYBER ATTACK DETECTED
- Intrusion Alert sent to on-call team

CRITICAL INCIDENT RESPONSE TEAM (CIRT)
- CIRT triggers issues and coordinates response using safe channels

CUSTOMER SERVICE
- Inbound call volume increases
- Team distributes an internal message with talking points

CUSTOMERS
- Impacted customers are notified via preferred channels

IT SECURITY
- Initiates CIRT activation and conference call
- On-call team confirms notification

EXECUTIVE TEAM
- Executive team notified securely and starts conferencing

LEGAL
- Inside and outside counsel review liabilities

MARKETING
- Marketing team collaborates on global PR and customer response

EMPLOYEES
- Employees receive official internal announcement via secure messaging
#4 Create a Communication Strategy

- **Who will you be contacting?**
 - Your IT experts
 - Senior management
 - Impacted customers

- **What communication system should be used?**
 - Off-net system
 - Secure/encrypted communications

- **How/where do you keep contact information up-to-date?**
 - Individuals
 - On-call personnel
 - Static groups
 - Dynamic groups
 - Subscriptions

- **How will you be communicating?**
 - Text, SMS,
 - Voice, text to voice
 - Emails
 - Mobile app, etc...

- **How often will you be communicating during the crisis?**

- **What content will be communicated, to whom?**
 - Notification templates

- **What’s the escalation rule if your IT experts don’t respond**

- **How often will you be communicating during the crisis?**

Like at Sony. What if your telephony network is also compromised?
#5 Make (Secure) Virtual Crisis Rooms Available

+ You need at least 2 (secure) conference Bridges:
 • Your IT experts and security experts
 • Senior Management/Stakeholders/Business

+ How will you be contacting the Stakeholders?
 • Off-net/Secure communications

+ How will you be contacting Your IT experts?
 • Manually
 • From your ticketing system
 • From your Monitoring tools
Summary

- DDoS attacks can’t be avoided and may take your operations down
- Can be disastrous on brand image and revenue
- React quickly and engage the RIGHT resources
- Have a plan
- Define a Cyber crisis response team
- Know who you will communicate with (IT/Security Staff, 3rd party vendors, Stakeholders/Exec/impacted customers...)
- Know who’s on-call for each IT and security team at all time (on-call schedules and escalation)
- Know who to escalate to, if no answer
- Have the communication workflows already defined (Cycles/multi-modality)
- Be able to start multiple virtual crisis rooms (Conference bridge, secure or not)
Engage Your IT Experts in 5 Minutes or Less with Everbridge IT Alerting

automated, multi-modal notifications • rules-based escalation • 1-click conferencing • on-call scheduling • auditing & reporting

ITalerting.com